University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Adaptive simulated annealing for CT image classification

        Author
        Albrecht, A.
        Loomes, M.J.
        Steinhofel, K.
        Wong, C.K.
        Attention
        2299/5352
        Abstract
        We present a pattern classification method that combines the classical Perceptron algorithm with simulated annealing. For a sample set S of n-dimensional patterns labeled as positive and negative, our algorithm computes threshold circuits of small depth where the linear threshold functions of the first layer are calculated by simulated annealing with the logarithmic cooling schedule c(k) = Γ(k)/ln (k + 2). The parameter F depends on the sample set and changes in time, and the neighborhood relation is determined by the Perceptron algorithm. We apply the approach to the recognition of focal liver tumours. From 400 positive (focal liver tumour) and 400 negative (normal liver tissue) examples a depth-six threshold circuit is calculated. The examples are of size n = 14 161 = 119 × 119 and they are presented in the DICOM format. On test sets of 100 + 100 examples (disjoint from the learning set) we obtain a correct classification of more than 98%.
        Publication date
        2002
        Published in
        International Journal of Pattern Recognition and Artificial Inteligence
        Other links
        http://hdl.handle.net/2299/5352
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan