University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Stationary axially symmetric rigidly rotating charged dust

        Author
        Georgiou, A.
        Attention
        2299/5366
        Abstract
        We obtain three stationary axially symmetric solutions of the Einstein–Maxwell field equations for rigidly rotating charged dust in a force–free electromagnetic field. The first solution, expressed in terms of Bessel functions of the first and second kind and hyperbolic functions, is not discussed beyond the derivation of one of the metric functions, because it already exists in the literature in a number of different situations. The other two solutions do not seem to exist in the literature. The second one is expressed in terms of modified Bessel functions of the first and second kind and circular functions. We obtain all the metric tensor components and electromagnetic 4–potential as well as the mass and charge densities for particular values of the arbitrary constants involved, but we do not discuss it beyond this point. The third solution is based on four arbitrary constants and different combinations of their values and of relations between them give rise to a number of different space–times, some of which are known solutions, but some are not. The cylindrically symmetric space–time of Som & Raychaudhuri is a particular case of this solution. A stationary axially symmetric space–time, which is a new solution for rotating neutral dust, is another and the interior van Stockum solution is a particular case of this. A number of interesting properties of the solution are pointed out.
        Publication date
        2001
        Published in
        Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences
        Published version
        https://doi.org/10.1098/rspa.2000.0712
        Other links
        http://hdl.handle.net/2299/5366
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan