University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The CB1 cannabinoid receptor antagonist AM251 blocks amphetamine-induced behavioural sensitization together with monoamine changes in the mouse nucleus accumbens and hippocampus

        Author
        Thiemann, G.
        Di Marzo, V.
        Molleman, A.
        Hasenoehrl, R.
        Attention
        2299/5505
        Abstract
        Endogenous cannabinoids modulate the activity of dopamine reward pathways and may play a role in the development of behavioural sensitization to psychostimulants. Here, we investigated the effects of the CB1 cannabinoid receptor antagonist AM251 on amphetamine-induced locomotor sensitization in mice. Furthermore, we measured post-mortem monoamine concentrations in nucleus accumbens and hippocampus after termination of the behavioural tests. The results can be summarized as follows: Mice pre-treated with AM251 (3 mg/kg; i.p.) showed less sensitivity to the psychomotor stimulant as well as locomotor sensitizing effects of amphetamine (2 mg/kg; i.p.) resembling previous results obtained with CB1 receptor-deficient animals. Furthermore, the behavioural effects of AM251 were paralleled by increased dopamine concentration in nucleus accumbens and increased serotonin concentration/turnover rate in hippocampus, respectively. The present data indicate that under normal conditions activation of the CB1 receptor facilitates those adaptive responses elicited by repeated psychostimulant administration and resulting in sensitization, possibly by reducing dopamine biosynthesis and serotonin turnover in the nucleus accumbens and hippocampus.
        Publication date
        2007
        Published in
        Pharmacology Biochemistry and Behavior
        Published version
        https://doi.org/10.1016/j.pbb.2008.01.010
        Other links
        http://hdl.handle.net/2299/5505
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan