University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Analysis of Linear and Nonlinear dimensionality Reduction Methods for Gender Classification of Face Images

        View/Open
        102108.pdf (PDF, 808Kb)
        Author
        Buchala, S.
        Davey, N.
        Gale, T.M.
        Frank, R.
        Attention
        2299/597
        Abstract
        Data in many real world applications are high dimensional and learning algorithms like neural networks may have problems in handling high dimensional data. However, the Intrinsic Dimension is often much less than the original dimension of the data. Here, we use fractal based methods to estimate the Intrinsic Dimension and show that a nonlinear projection method called Curvilinear Component Analysis can effectively reduce the original dimension to the Intrinsic Dimension. We apply this approach for dimensionality reduction of the face images data and use neural network classifiers for Gender Classification.
        Publication date
        2005-11
        Published in
        International Journal of Systems Science
        Published version
        https://doi.org/10.1080/00207720500381573
        Other links
        http://hdl.handle.net/2299/597
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan