Show simple item record

dc.contributor.authorGarces, A.
dc.contributor.authorCatalan, S.
dc.contributor.authorRibas, I.
dc.date.accessioned2011-06-27T14:05:55Z
dc.date.available2011-06-27T14:05:55Z
dc.date.issued2011
dc.identifier.citationGarces , A , Catalan , S & Ribas , I 2011 , ' Time evolution of high-energy emissions of low-mass stars : I. Age determination using stellar chronology with white dwarfs in wide binaries ' , Astronomy and Astrophysics , vol. 531 . https://doi.org/10.1051/0004-6361/201116775
dc.identifier.issn0004-6361
dc.identifier.otherdspace: 2299/6046
dc.identifier.urihttp://hdl.handle.net/2299/6046
dc.descriptionOriginal article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory
dc.description.abstractContext : Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims : We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods : We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, lowresolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results : The spectroscopic observations have allowed us to determine ages for the binary systems usingWDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions : We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity.en
dc.format.extent690872
dc.language.isoeng
dc.relation.ispartofAstronomy and Astrophysics
dc.subjectbinaries : visual
dc.subjectstars : activity
dc.subjectstars : evolution
dc.subjectstars : low-mass
dc.subjectwhite dwarfs
dc.titleTime evolution of high-energy emissions of low-mass stars : I. Age determination using stellar chronology with white dwarfs in wide binariesen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1051/0004-6361/201116775
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record