University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Using real-valued metaclassifiers to integrate binding site predictions

        View/Open
        Final Accepted Version (PDF, 177Kb)
        Author
        Sun, Yi
        Robinson, M.
        Adams, Roderick
        Kaye, Paul H.
        Rust, A.G.
        Davey, N.
        Attention
        2299/6105
        Abstract
        Currently the best algorithms for transcription factor binding site prediction are severely limited in accuracy. There is good reason to believe that predictions from these different classes of algorithms could be used in conjunction to improve the quality of predictions. In this paper, we apply single layer networks, rules sets and support vector machines on predictions from 12 key real valued algorithms. Furthermore, we use a ‘window’ of consecutive results in the input vector in order to contextualise the neighbouring results. We improve the classification result with the aid of under- and over- sampling techniques. We find that support vector machines outperform each of the original individual algorithms and the other classifiers employed in this work. In particular they have a better tradeoff between recall and precision.
        Publication date
        2005
        Published in
        In: Procs of IJCNN 2005, Int Joint Conference on Neural networks
        Other links
        http://hdl.handle.net/2299/6105
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan