University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Revealing the gamma-ray jet in a black hole binary

        View/Open
        905433.pdf (PDF, 5Mb)
        Author
        Hardcastle, M.J.
        Attention
        2299/6265
        Abstract
        An important advance in high-energy astrophysics over the past decade has been the detailed understanding of the nature of binary stellar systems in which material from an ordinary star is being accreted on to a compact object, either a neutron star or a black hole (1, 2). These systems are called x-ray binaries because emission from the accretion disk and associated material appears very bright in the x-ray regime. In recent years, it has become clear that a substantial amount of the energy generated as matter is accreted can be ejected in the form of high-velocity jets that inject energy into the environment around the binary system (3, 4). Because of similarities in their structure, these x-ray binaries (or microquasars) may offer us insights into the much more powerful, but much more distant, outflows associated with the supermassive black holes at the centers of active galaxies such as quasars. Moreover, their smaller size allows us to watch them evolve over time scales that are compatible with a human lifetime. Direct measurements of the properties of the jets in x-ray binaries have been rather elusive, however. On page 438 of this issue, Laurent et al. (5) show that gamma-ray polarization measurements can be used to make a convincing case for a jet origin for some of the gamma-ray emission observed from the prototypical x-ray binary, Cygnus X-1.
        Publication date
        2011
        Published in
        Science
        Published version
        https://doi.org/10.1126/science.1204074
        Other links
        http://hdl.handle.net/2299/6265
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan