University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The ATLAS(3D) project - III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of fast and slow rotators

        View/Open
        905566.pdf (PDF, 1Mb)
        Author
        Emsellem, Eric
        Cappellari, Michele
        Krajnovic, Davor
        Alatalo, Katherine
        Blitz, Leo
        Bois, Maxime
        Bournaud, Frederic
        Bureau, Martin
        Davies, Roger L.
        Davis, Timothy A.
        de Zeeuw, P. T.
        Khochfar, Sadegh
        Kuntschner, Harald
        Lablanche, Pierre-Yves
        McDermid, Richard M.
        Morganti, Raffaella
        Naab, Thorsten
        Oosterloo, Tom
        Sarzi, Marc
        Scott, Nicholas
        Serra, Paolo
        van de Ven, Glenn
        Weijmans, Anne-Marie
        Young, Lisa M.
        Attention
        2299/6466
        Abstract
        We provide a census of the apparent stellar angular momentum within one effective radius of a volume-limited sample of 260 early-type galaxies (ETGs) in the nearby Universe, using the integral-field spectroscopy obtained in the course of the ATLAS(3D) project. We exploit the lambda(R) parameter (previously used via a constant threshold value of 0.1) to characterize the existence of two families of ETGs: slow rotators which exhibit complex stellar velocity fields and often include stellar kinematically distinct cores, and fast rotators which have regular velocity fields. Our complete sample of 260 ETGs leads to a new criterion to disentangle fast and slow rotators which now includes a dependency on the apparent ellipticity epsilon. It separates the two classes significantly better than the previous prescription and better than a criterion based on V/sigma: slow rotators and fast rotators have.R lower and larger than k(FS) x root epsilon, respectively, where k(FS) = 0.31 for measurements made within an effective radius R-e. We show that the vast majority of ETGs are fast rotators: these have the regular stellar rotation, with aligned photometric and kinematic axes (Paper II of this series), include discs and often bars and represent 86 +/- 2 per cent (224/260) of all ETGs in the volume-limited ATLAS(3D) sample. Fast rotators span the full range of apparent ellipticities from epsilon = 0 to 0.85, and we suggest that they cover intrinsic ellipticities from about 0.35 to 0.85, the most flattened having morphologies consistent with spiral galaxies. Only a small fraction of ETGs are slow rotators representing 14 +/- 2 per cent (36/260) of the ATLAS(3D) sample of ETGs. Of all slow rotators, 11 per cent (4/36) exhibit two counter-rotating stellar disc-like components and are rather low-mass objects (M-dyn < 10(10.5) M-circle dot). All other slow rotators (32/36) appear relatively round on the sky (epsilon(e) < 0.4), tend to be massive (M-dyn > 10(10.5) M-circle dot), and often (17/32) exhibit kinematically distinct cores. Slow rotators dominate the high-mass end of ETGs in the ATLAS(3D) sample, with only about one-fourth of galaxies with masses above 10(11.5) M-circle dot being fast rotators. We show that the a4 parameter which quantifies the isophote's disciness or boxiness does not seem to be simply related to the observed kinematics, while our new-criterion based on lambda(R) and epsilon is nearly independent of the viewing angles. We further demonstrate that the classification of ETGs into ellipticals and lenticulars is misleading. Slow and fast rotators tend to be classified as ellipticals and lenticulars, respectively, but the contamination is strong enough to affect results solely based on such a scheme: 20 per cent of all fast rotators are classified as ellipticals, and more importantly 66 per cent of all ellipticals in the ATLAS(3D) sample are fast rotators. Fast and slow rotators illustrate the variety of complex processes shaping galactic systems, such as secular evolution, disc instabilities, interaction and merging, gas accretion, stripping and harassment, forming a sequence from high to low (stellar) baryonic angular momentum. Massive slow rotators represent the extreme instances within the red sequence of galaxies which might have suffered from significant merging without being able to rebuild a fastrotating component within one effective radius. We therefore argue for a shift in the paradigm for ETGs, where the vast majority of ETGs are galaxies consistent with nearly oblate systems (with or without bars) and where only a small fraction of them (less than 12 per cent) have central (mildly) triaxial structures.
        Publication date
        2011-06
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1111/j.1365-2966.2011.18496.x
        Other links
        http://hdl.handle.net/2299/6466
        Metadata
        Show full item record

        Related items

        Showing items related by title, author, creator and subject.

        • The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies 

          James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)
          We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ...
        • On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe 

          Martin, Garreth (2019-07-17)
          The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ...
        • Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers. 

          Violino, Giulio; Ellison, S.L.; Sargent, M.; Coppin, Kristen; Scudder, Jillian; Mendel, Trevor; Saintonge, A. (2018-05-11)
          We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close ...
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan