The ATLAS project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM
View/ Open
Author
Khochfar, S.
Emsellem, E.
Bois, M.
de Zeeuw, P.T.
Krajnović, D.
Emsellem, E.
Bois, M.
Bacon, R.
Lablanche, P.-Y.
Serra, P.
Morganti, R.
Oosterloo, T.
Alatalo, K.
Blitz, L.
Bournaud, F.
Oosterloo, T.
Bureau, M.
Cappellari, M.
Davies, R.L.
Davis, T.A.
Scott, N.
Duc, P.-A.
Kuntschner, H.
McDermid, R.M.
Morganti, R.
Naab, T.
Sarzi, M.
Weijmans, A.-M.
Young, L.M.
Attention
2299/6843
Abstract
We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λ. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the ATLAS survey, assuming that fast-rotating ETGs have at least 10 per cent of their total stellar mass in a disc component. In agreement with ATLAS observations we find that slow rotators are predominantly galaxies with M > 10M contributing ~20 per cent to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between ~50 and 90 per cent of their stellar mass from satellites and their most massive progenitors have on average up to three major mergers during their evolution. Fast rotators in contrast accrete less than 50 per cent and have on average less than one major merger in their past. We find that the underlying physical reason for the different growth histories is the slowing down and ultimately complete shut-down of gas cooling in massive galaxies. Once cooling and associated star formation in disc stop, galaxies grow via infall from satellites. Frequent minor mergers thereby destroy existing stellar discs via violent relaxation and also tend to lower the specific angular momentum of the main stellar body, lowering λ into the slow rotator regime. On average, the last gas-rich major merger interaction in slow rotators happens at z > 1.5, followed by a series of minor mergers. These results support the idea that kinematically decoupled cores (KDC) form during gas-rich major mergers at high z followed by minor mergers, which build-up the outer layers of the remnant, and make remnants that are initially too flat compared to observations become rounder. Fast rotators are less likely to form such KDCs due to the fact that they have on average less than one major merger in their past. Fast rotators in our model have different formation paths. The majority, 78 per cent, has bulge-to-total stellar mass ratios (B/T) > 0.5 and managed to grow stellar discs due to continued gas cooling or bulges due to frequent minor mergers. The remaining 22 per cent live in high-density environments and consist of low B/T galaxies with gas fractions below 15 per cent, that have exhausted their cold gas reservoir and have no hot halo from which gas can cool. These fast rotators most likely resemble the flattened disc-like fast rotators in the ATLAS survey. Our results predict that ETGs can change their state from fast to slow rotator and vice versa, while the former is taking place predominantly at low z (z < 2), the latter is occurring during cosmic epochs when cooling times are short and galaxies gas-rich. We predict that the ratio of the number density of slow to fast rotators is a strong function of redshift, with massive (>10M) fast rotators being more than one order of magnitude more frequent at z~ 2.
Publication date
2011-10-01Published in
Monthly Notices of the Royal Astronomical SocietyPublished version
https://doi.org/10.1111/j.1365-2966.2011.19486.xOther links
http://hdl.handle.net/2299/6843Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...