University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Two populations are better than one: Short gamma-ray bursts from SGR giant flares and NS-NS mergers

        View/Open
        901966.pdf (PDF, 99Kb)
        Author
        Chapman, R.
        Priddey, R.
        Tanvir, N.
        Attention
        2299/6916
        Abstract
        With a peak luminosity of ~ 1047 erg s-1 the December 27th 2004 giant flare from SGR1806-20 would have been visible by BATSE (the Burst and Transient Source Experiment) out to ≈50 Mpc. It is thus plausible that some fraction of the short duration Gamma-Ray Bursts (sGRBs) in the BATSE catalogue were due to extragalactic magnetar giant flares. According to the most widely accepted current models, the remaining BATSE sGRBs were most likely produced by compact object (neutron star-neutron star or neutron star-black hole) mergers with intrinsically higher luminosities [1]. Previously, by examining correlations on the sky between BATSE sGRBs and galaxies within 155 Mpc, we placed limits on the proportion of nearby sGRBs [3]. Here, we examine the redshift distribution of sGRBs produced by assuming both one and two populations of progenitor with separate Luminosity Functions (LFs). Using the local Galactic SGR giant flare rate and theoretical NS-NS merger rates evolved according to well-known Star Formation Rate parameterisations, we constrain the predicted distributions by BATSE sGRB overall number counts. We show that only a dual population consisting of both SGR giant flares and NS-NS mergers can reproduce the likely local distribution of sGRBs as well as the overall number counts. In addition, the best fit LF parameters of both sub-populations are in good agreement with observed luminosities.
        Publication date
        2007
        Published in
        40 Years of Pulsars
        Other links
        http://hdl.handle.net/2299/6916
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan