Joint Source Channel Coding for H.264 Compliant Stereoscopic Video Transmission
View/ Open
Author
Yip, P.Y.
Malcolm, J.
Fernando, A.
Loo, K.K.
Arachchi, H.K.
Attention
2299/6960
Abstract
Stereoscopic video coding research has received considerable interest over the past decade as many 3D displays have been developed. Unfortunately, the vast amount of multimedia content needed to transmit or store a stereo image pair or video sequence has hindered its use in commercial applications. As H.264 offers significantly enhanced compression and a “network-friendly” feature, we have used a H.264 compliant stereoscopic video codec [9] to compress stereo video. The data partitioning (DP) mode in NAL unit of the H.264 codec is exploited for the use of joint source and channel coding (JSCC) taking channel qualities and reliabilities into account. In this paper, we propose a framework of using unequal error protection (UEP) based JSCC scheme on the H.264 compliant stereoscopic video transmission for additive white Gaussian noise (AWGN) channel. Different levels of error protection are assigned to different partitions based on their decoding importance. Performance comparisons are made against equal error protection (EEP) schemes. Results from the simulation show that using UEP schemes, the overall quality of the decoded main and auxiliary video sequence were clearly improved in comparison with the EEP scheme at good SNR but EEP schemes outperformed UEP schemes at low SNR values.