University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Long-term monitoring of the dynamics and particle acceleration of knots in the jet of Centaurus A

        Author
        Goodger, Joanna
        Hardcastle, M.J.
        Croston, J.H.
        Kraft, R.P.
        Birkinshaw, M.
        Evans, D.A.
        Jordan, A.
        Nulsen, P.E.J.
        Sivakoff, G.R.
        Worrall, D.M.
        Brassington, Nicola
        Forman, W.R.
        Gilfanov, M.
        Jones, C.
        Murray, S.S.
        Raychaudhury, S.
        Sarazin, C.L.
        Voss, R.
        Woodley, K.A.
        Attention
        2299/7265
        Abstract
        We present new and archival multi-frequency radio and X-ray data for Centaurus A obtained over almost 20 years at the Very Large Array and with Chandra, with which we measure the X-ray and radio spectral indices of jet knots, flux density variations in the jet knots, polarization variations, and proper motions. We compare the observed properties with current knot formation models and particle acceleration mechanisms. We rule out impulsive particle acceleration as a formation mechanism for all of the knots as we detect the same population of knots in all of the observations, and we find no evidence of extreme variability in the X-ray knots. We find that the most likely mechanism for all the stationary knots is a collision resulting in a local shock followed by a steady state of prolonged, stable particle acceleration, and X-ray synchrotron emission. In this scenario, the X-ray-only knots have radio counterparts that are too faint to be detected, while the radio-only knots are due to weak shocks where no particles are accelerated to X-ray emitting energies. Although the base knots are prime candidates for reconfinement shocks, the presence of a moving knot in this vicinity and the fact that there are two base knots are hard to explain in this model. We detect apparent motion in three knots; however, their velocities and locations provide no conclusive evidence for or against a faster moving "spine" within the jet. The radio-only knots, both stationary and moving, may be due to compression of the fluid.
        Publication date
        2010
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1088/0004-637X/708/1/675
        Other links
        http://hdl.handle.net/2299/7265
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan