Gradients of absorption-line strengths in elliptical galaxies
Author
Arimoto, N
Kobayashi, Chiaki
Attention
2299/7420
Abstract
We have restudied line-strength gradients of 80 elliptical galaxies. Typical metallicity gradients of elliptical galaxies are Delta[Fe/H]/Delta log r similar or equal to -0.3, which is flatter than the gradients predicted by monolithic collapse simulations. The metallicity gradients do not correlate with any physical properties of galaxies, including central and mean metallicities, central velocity dispersions sigma(0), absolute B magnitudes M-B, absolute effective radii R-e, and dynamical masses of galaxies. By using the metallicity gradients, we have calculated mean stellar metallicities for individual ellipticals. Typical mean stellar metallicities are [[Fe/H]] similar or equal to -0.3 and range from [[Fe/H]] similar or equal to -0.8 to +0.3, which is contrary to what Gonzalez & Gorgas claimed; the mean metallicities of ellipticals are not universal. The mean metallicities correlate well with sigma(0) and dynamical masses, though relations for M-B and R-e include significant scatters. We find fundamental planes defined by surface brightnesses SBe, [[Fe/H]], and R-e (or M-B), the scatters of which are much smaller than those of the [[Fe/H]]-R-e (or [[Fe/H]]-M-B) relations. The [[Fe/H]]-log sigma(0) relation is nearly parallel to the [Fe/H](0)-log sigma(0) relation but systematically lower by 0.3 dex; thus the mean metallicities are about one-half of the central values. The metallicity-mass relation or, equivalently, the color-magnitude relation of ellipticals holds not only for the central parts of galaxies but also for entire galaxies. Assuming that Mg-2 and Fe-1 give [Mg/H] and [Fe/H], respectively, we find [[Mg/Fe]] similar or equal to +0.2 in most of elliptical galaxies. [[Mg/Fe]] shows no correlation with galaxy mass tracers such as sigma(0), in contrast to what was claimed for the central [Mg/Fe]. This can be most naturally explained if the star formation had stopped in elliptical galaxies before the bulk of Type Ia supernovae began to occur. Elliptical galaxies can have significantly different metallicity gradients and [[Fe/H]], even if they have the same galaxy mass. This may result from galaxy mergers, but no evidence is found from presently available data to support the same origin for metallicity gradients, the scatters around the metallicity-mass relation, and dynamical disturbances. This may suggest that the scatters have their origin at the formation epoch of galaxies.
Publication date
1999-12-20Published in
The Astrophysical JournalPublished version
https://doi.org/10.1086/308092Other links
http://hdl.handle.net/2299/7420Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers.
Violino, Giulio; Ellison, S.L.; Sargent, M.; Coppin, Kristen; Scudder, Jillian; Mendel, Trevor; Saintonge, A. (2018-05-11)We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close ...