University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The origin of the diversity of Type Ia supernovae and the environmental effects

        View/Open
        kobayashi9906192v2.pdf (PDF, 145Kb)
        Author
        Umeda, H
        Nomoto, K
        Kobayashi, Chiaki
        Hachisu, I
        Kato, M
        Attention
        2299/7422
        Abstract
        Observations suggest that the properties of Type Ia supernovae (SNe Ia) may depend on environmental characteristics, such as the morphology, metallicity, and age of the host galaxies. The influence of these environmental properties on the resulting SNe Ia is studied in this Letter. First, it is shown that the carbon mass fraction X(C) in the C + O white dwarf SN Ia progenitors tends to be smaller for a lower metallicity environment and an older binary system. It is then suggested that the variation of X(C) causes the diversity in the brightness of SNe Ia: a smaller X(C) leads to a dimmer SN Ia. Further studies of the propagation of the turbulent flame are necessary to confirm this relation. Our model for the SN Ia progenitors then predicts that when the progenitors belong to an older population or to a low-metallicity environment, the number of bright SNe Ia is reduced, so that the variation in brightness among the SNe Ia is also smaller. Thus, our model can explain why the mean SN Ia brightness and its dispersion depend on the morphology of the host galaxies and on the distance of the SN from the center of the galaxy. It is further predicted that at higher redshift (z greater than or similar to 1), both the mean brightness of SNe Ia and its variation should be smaller in spiral galaxies than in elliptical galaxies. These variations are within the range observed in nearby SNe Ia. Insofar as the variation in X(C) is the most important cause for the diversity among SNe Ia, the light-curve shape method that is currently used to determine the absolute magnitude of SNe Ia can also be applied to high-redshift SNe Ia.
        Publication date
        1999-09-01
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1086/312213
        Other links
        http://hdl.handle.net/2299/7422
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan