University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Quantitative determination of single-bead metal content from a peptide combinatorial library

        Author
        Stair, Jacqueline L.
        White, Brianna R.
        Rowland, Adam
        Holcombe, James A.
        Attention
        2299/7677
        Abstract
        An electrothermal vaporizer inductively coupled plasma mass spectrometer (ETV-ICPMS) was used to quantitatively screen metals bound to single polystyrene (TentaGel) beads with immobilized oligopeptides. Tests were performed using ETV-ICPMS to screen a series of identical beads as well as a series of combinatorial library beads exposed to a multimetal solution composed of Mg2+, Mn2+, Ni2+, Cu2+, Cd2+, Eu2+, and Pb2+. The residual metal content remaining bound to the beads after acid extractions was also analyzed by solid sampling of the entire bead using oxygen ashing in the ETV. Nine beads (80 mesh, 0.25 mmol g(-1) nominal capacity) containing covalently attached polyaspartic acid (PLAsp; n = 20) showed metal extract concentrations in the range of 4-130 ng mL(-1). After normalizing by bead volume, the precision of capacity measurements in a single bead (7-14%) was primarily dictated by analysis error and contributions from bead diameter measurement with negligible contributions, surprisingly, from variations in site density from bead to bead. A sample combinatorial library of the sequence GXXGXXGXXGXX (X = cysteine, aspartic acid, or glutamic acid and G = glycine) (60 mesh, 0.25 mmol g(-1) nominal capacity) was also used to demonstrate the utility of this method. Metal extract concentrations ranged from 1 to 1300 ng mL(-1) with significant concentration variation between beads, indicating the individual selectivity on each bead. For these larger beads, analysis precision (i.e., capacity precision) was further improved to 3-10% due to the overall increase in bead metal content. Through metal extract determinations, ETV-ICPMS was shown to be a viable nondestructive tool for full metal characterization of "hit" sequences belonging to a combinatorial library.
        Publication date
        2006-11-13
        Published in
        Journal of Combinatorial Chemistry
        Published version
        https://doi.org/10.1021/cc060100m
        Other links
        http://hdl.handle.net/2299/7677
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan