University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The initial conditions of high-mass star formation : radiative transfer models of IRDCs seen in the Herschel Hi-GAL survey

        View/Open
        905089.pdf (PDF, 2Mb)
        Author
        Wilcock, L.A.
        Kirk, J.M.
        Stamatellos, D.
        Ward-Thompson, D.
        Whitworth, A.
        Battersby, C.
        Brunt, C.
        Fuller, G.A.
        Griffin, M.
        Molinari, S.
        Martin, P.
        Mottram, J.C.
        Peretto, N.
        Plume, R.
        Smith, H.A.
        Thompson, M.A.
        Attention
        2299/7915
        Abstract
        The densest infrared dark clouds (IRDCs) may represent the earliest observable stage of high-mass star formation. These clouds are very cold, hence they emit mainly at far-infrared and sub-mm wavelengths. For the first time, Herschel has provided multi-wavelength, spatially resolved observations of cores within IRDCs, which, when combined with radiative transfer modelling, can constrain their properties, such as mass, density profile and dust temperature. We use a 3D, multi-wavelength Monte Carlo radiative transfer code to model in detail the emission from six cores in three typical IRDCs seen in the Hi-GAL survey (G030.50+00.95, G031.03+00.26 and G031.03+00.76), and thereby to determine the properties of these cores and compare them with their low-mass equivalents. We found masses ranging from 90 to 290 M-circle dot with temperatures from 8 to 11 K at the centre of each core and 18 to 28 K at the surface. The maximum luminosity of an embedded star within each core was calculated, and we rule out the possibility of significant high mass star formation having yet occurred in three of our cores.
        Publication date
        2011
        Published in
        Astronomy and Astrophysics
        Published version
        https://doi.org/10.1051/0004-6361/201015488
        Other links
        http://hdl.handle.net/2299/7915
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan