The ATLAS(3D) project - I. : A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria
View/ Open
Author
Cappellari, Michele
Emsellem, Eric
Krajnovic, Davor
McDermid, Richard M.
Scott, Nicholas
Kleijn, G. A. Verdoes
Young, Lisa M.
Alatalo, Katherine
Bacon, R.
Blitz, Leo
Bois, Maxime
Bournaud, Frederic
Bureau, M.
Davies, Roger L.
Davis, Timothy A.
de Zeeuw, P. T.
Duc, Pierre-Alain
Khochfar, Sadegh
Kuntschner, Harald
Lablanche, Pierre-Yves
Morganti, Raffaella
Naab, Thorsten
Oosterloo, Tom
Sarzi, Marc
Serra, Paolo
Weijmans, Anne-Marie
Attention
2299/7955
Abstract
The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H i), molecular (CO) and ionized gas (H beta, [O iii] and [N i]), together with the kinematics and population of the stars (H beta, Fe5015 and Mg b), for a carefully selected, volume-limited (1.16 x 105 Mpc3) sample of 260 early-type (elliptical E and lenticular S0) galaxies (ETGs). The models include semi-analytic, N-body binary mergers and cosmological simulations of galaxy formation. Here we present the science goals for the project and introduce the galaxy sample and the selection criteria. The sample consists of nearby (D < 42 Mpc, |delta - 29 degrees| < 35 degrees, |b| > 15 degrees) morphologically selected ETGs extracted from a parent sample of 871 galaxies (8 per cent E, 22 per cent S0 and 70 per cent spirals) brighter than M-K < -21.5 mag (stellar mass M-star greater than or similar to 6 x109 M-circle dot). We analyse possible selection biases and we conclude that the parent sample is essentially complete and statistically representative of the nearby galaxy population. We present the size-luminosity relation for the spirals and ETGs and show that the ETGs in the ATLAS3D sample define a tight red sequence in a colour-magnitude diagram, with few objects in the transition from the blue cloud. We describe the strategy of the SAURON integral field observations and the extraction of the stellar kinematics with the ppxf method. We find typical 1 Sigma errors of delta V approximate to 6 km s-1, delta Sigma approximate to 7 km s-1, delta h(3) approximate to delta h(4) approximate to 0.03 in the mean velocity, the velocity dispersion and Gauss-Hermite (GH) moments for galaxies with effective dispersion Sigma(e) greater than or similar to 120 km s-1. For galaxies with lower Sigma(e) (approximate to 40 per cent of the sample) the GH moments are gradually penalized by ppxf towards zero to suppress the noise produced by the spectral undersampling and only V and Sigma can be measured. We give an overview of the characteristics of the other main data sets already available for our sample and of the ongoing modelling projects.
Publication date
2011-05Published in
Monthly Notices of the Royal Astronomical SocietyPublished version
https://doi.org/10.1111/j.1365-2966.2010.18174.xOther links
http://hdl.handle.net/2299/7955Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...