University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Comparing GC and Field LMXBs in elliptical galaxies with Deep Chandra and Hubble Data

        View/Open
        904641.pdf (PDF, 2Mb)
        Author
        Kim, D.-W.
        Fabbiano, G.
        Brassington, Nicola
        Fragos, T.
        Kalogera, V.
        Zezas, A.
        Jordán, A.
        Sivakoff, G.R.
        Kundu, A.
        Zepf, S.E.
        Angelini, L.
        Davies, R. L.
        Gallagher, J.S.
        Juett, A.M.
        King, A.R.
        Pellegrini, S.
        Sarazin, C.L.
        Trinchieri, G.
        Attention
        2299/8152
        Abstract
        We present a statistical study of the low-mass X-ray binary (LMXB) populations of three nearby, old elliptical galaxies: NGC 3379, NGC 4278, and NGC 4697. With a cumulative ~1 Ms Chandra ACIS observing time, we detect 90-170 LMXBs within the D25 ellipse of each galaxy. Cross-correlating Chandra X-ray sources and HST optical sources, we identify 75 globular cluster (GC) LMXBs and 112 field LMXBs with LX > 1036 erg s-1 (detections of these populations are 90% complete down to luminosities in the range of 6 × 1036 to 1.5 × 1037 erg s-1). At the higher luminosities explored in previous studies, the statistics of this sample are consistent with the properties of GC-LMXBs reported in the literature. In the low-luminosity range allowed by our deeper data (LX < 5 × 1037 erg s-1), we find a significant relative lack of GC-LMXBs, when compared with field sources. Using the co-added sample from the three galaxies, we find that the incompleteness-corrected X-ray luminosity functions (XLFs) of GC and field LMXBs differ at ~4σ significance at LX < 5 × 1037 erg s-1. As previously reported, these XLFs are consistent at higher luminosities. The presently available theoretical models for LMXB formation and evolution in clusters are not sophisticated enough to provide a definite explanation for the shape of the observed GC-LMXB XLF. Our observations may indicate a potential predominance of GC-LMXBs with donors evolved beyond the main sequence, when compared to current models, but their efficient formation requires relatively high initial binary fractions in clusters. The field LMXB XLF can be fitted with either a single power-law model plus a localized excess at a luminosity of (5-6) × 1037 erg s-1, or a broken power law with a similar low-luminosity break. This XLF may be explained with NS-red-giant LMXBs, contributing to ~15% of total LMXBs population at ~5 × 1037 erg s-1. The difference in the GC and field XLFs is consistent with different origins and/or evolutionary paths between the two LMXB populations, although a fraction of the field sources are likely to have originated in GCs.
        Publication date
        2009-09-01
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1088/0004-637X/703/1/829
        Other links
        http://hdl.handle.net/2299/8152
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan