University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Experimental Assessment of a Modal-Based Multi-Parameter Method for Locating Damage in Composite Laminates

        View/Open
        Final Accepted Version (PDF, 2Mb)
        Author
        Montalvao, D.
        Ribeiro, A. M. R.
        Duarte-Silva, J. A. B.
        Attention
        2299/8370
        Abstract
        The low specific weight of composite materials, together with their excellent mechanical properties, make them suitable to be widely used in many modern engineering structures. However, composite materials are quite sensitive to impacts: a specific kind of damage, called Barely Visible Impact Damage (BVID), may occur, constituting an unsafe failure of difficult assessment. In the past few years several methods have been developed aiming at assessing this type of damage. In this paper, a vibration-based technique that combines both the natural frequencies and the modal damping factors as damage sensitive features is tested for locating impact damage in carbon fibre reinforced laminates. The method is intended to be used for locating damage in real laminated composite structures that undergo in-service impacts, such as an airplane's fuselage or wings. Assessing a minimum of one response coordinate is the strict requirement during each inspection, because it uses the dynamic global parameters of the structure as damage features. This is possible because the method assumes that, at least for BVID, the mode shapes remain practically unchanged. The theory is summarized and the method is tested using experimental setups where damage is introduced at different locations. Additionally, the hypothesis that different damage morphologies on composite materials have different contributions to the damage features is addressed.
        Publication date
        2011-11
        Published in
        Experimental Mechanics
        Published version
        https://doi.org/10.1007/s11340-011-9472-5
        Other links
        http://hdl.handle.net/2299/8370
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan