University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems

        Author
        Liu, Fang
        Lizio, R.
        Schneider, U.
        Petereit, H.
        Blakey, P.
        Basit, A.W.
        Attention
        2299/8416
        Abstract
        novel double coating enteric system (comprising an inner layer of neutralised EUDRAGIT® L 30 D-55 and organic acid, and an outer layer of standard EUDRAGIT® L 30 D-55) was developed to provide fast dissolution in proximal small intestinal conditions. The mechanisms involved in the dissolution of the double coating were investigated and compared with a conventional single layer enteric coating and an hypromellose (HPMC) sub-coated enteric system. Rates of drug release from coated prednisolone pellets were established using USP II dissolution methods (0.1 M HCl for 2 h and subsequently pH 5.5 phosphate buffer) and the coating dissolution process was illustrated using confocal laser scanning microscopy (CLSM). The distribution of sodium, as a representative ion, in the double-coating system during dissolution was determined using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). The double-coating system showed faster dissolution compared to the single coating and the HPMC sub-coated system in pH 5.5 buffer. The dissolution process of the double-coating was unusual; the inner coat dissolved before the outer coat and this accelerated the dissolution of the outer coat. During dissolution, sodium ions diffused from the inner coat to the outer coat. This migration of ions and the increased ionic strength and buffer capacity of the inner coat contribute to the rapid dissolution of the double-coating system.
        Publication date
        2009-03
        Published in
        International Journal of Pharmaceutics
        Published version
        https://doi.org/10.1016/j.ijpharm.2008.10.035
        Other links
        http://hdl.handle.net/2299/8416
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan