University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Constraints on the formation of the galactic bulge from Na, Al, and heavy-element abundances in Plaut's field.

        View/Open
        Final Accepted Version (PDF, 1Mb)
        Author
        Johnson, Christian I.
        Rich, R. Michael
        Kobayashi, Chiaki
        Fulbright, Jon P.
        Attention
        2299/8752
        Abstract
        We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut's low-extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high-resolution (R approximate to 25,000), high signal-to-noise (S/N similar to 50-100 pixel(-1)) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the alpha-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (less than or similar to 1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulges formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe], and to a lesser extent [La/Fe], abundances further indicate that the metal-poor bulge, at least at similar to 1 kpc from the Galactic center, and thick disk may not share an identical chemistry.
        Publication date
        2012-04-05
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1088/0004-637X/749/2/175
        Other links
        http://hdl.handle.net/2299/8752
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan