University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Cosmological measurements with forthcoming radio continuum surveys.

        View/Open
        906160.pdf (PDF, 1018Kb)
        Author
        Raccanelli, Alvise
        Zhao, Gong-Bo
        Bacon, David J.
        Jarvis, M.J.
        Percival, Will J.
        Norris, Ray P.
        Rottgering, Huub
        Abdalla, Filipe B.
        Cress, Catherine M.
        Kubwimana, Jean-Claude
        Lindsay, Sam
        Nichol, Robert C.
        Santos, Mario G.
        Schwarz, Dominik J.
        Attention
        2299/8828
        Abstract
        We present forecasts for constraints on cosmological models that can be obtained using the forthcoming radio continuum surveys: the wide surveys with the Low Frequency Array (LOFAR) for radio astronomy, the Australian Square Kilometre Array Pathfinder (ASKAP) and the Westerbork Observations of the Deep Apertif Northern Sky (WODAN). We use simulated catalogues that are appropriate to the planned surveys in order to predict measurements obtained with the source autocorrelation, the cross-correlation between radio sources and cosmic microwave background (CMB) maps (the integrated SachsWolfe effect), the cross-correlation of radio sources with foreground objects resulting from cosmic magnification, and a joint analysis together with the CMB power spectrum and supernovae (SNe). We show that near-future radio surveys will bring complementary measurements to other experiments, probing different cosmological volumes and having different systematics. Our results show that the unprecedented sky coverage of these surveys combined should provide the most significant measurement yet of the integrated SachsWolfe effect. In addition, we show that the use of the integrated SachsWolfe effect will significantly tighten the constraints on modified gravity parameters, while the best measurements of dark energy models will come from galaxy autocorrelation function analyses. Using a combination of the Evolutionary Map of the Universe (EMU) and WODAN to provide a full-sky survey, it will be possible to measure the dark energy parameters with an uncertainty of {s(w0) = 0.05, s(wa) = 0.12} and the modified gravity parameters {s(?0) = 0.10, s(mu 0) = 0.05}, assuming Planck CMB+SN (current data) priors. Finally, we show that radio surveys would detect a primordial non-Gaussianity of fNL= 8 at 1s, and we briefly discuss other promising probes.
        Publication date
        2012-08
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1111/j.1365-2966.2012.20634.x
        Other links
        http://hdl.handle.net/2299/8828
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan