Show simple item record

dc.contributor.authorChristianson, B.
dc.date.accessioned2012-08-23T13:00:38Z
dc.date.available2012-08-23T13:00:38Z
dc.date.issued2012
dc.identifier.citationChristianson , B 2012 , A Leibniz notation for automatic differentiation . in Recent Advances in Algorithmic Differentiation . Lecture Notes in Computational Science and Engineering , vol. 87 , Springer Nature Link , pp. 1-9 . https://doi.org/10.1007/978-3-642-30023-3_1
dc.identifier.isbn978-3-642-30022-6
dc.identifier.urihttp://hdl.handle.net/2299/8933
dc.description.abstractNotwithstanding the superiority of the Leibniz notation for differential calculus, the dot-and-bar notation predominantly used by the Automatic Differentiation community is resolutely Newtonian. In this paper we extend the Leibnitz notation to include the reverse (or adjoint) mode of Automatic Differentiation, and use it to demonstrate the stepwise numerical equivalence of the three approaches using the reverse mode to obtain second order derivatives, namely forward-over-reverse, reverse-over-forward, and reverse-over-reverse.en
dc.format.extent130417
dc.language.isoeng
dc.publisherSpringer Nature Link
dc.relation.ispartofRecent Advances in Algorithmic Differentiation
dc.relation.ispartofseriesLecture Notes in Computational Science and Engineering
dc.titleA Leibniz notation for automatic differentiationen
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusNon peer reviewed
rioxxterms.versionofrecord10.1007/978-3-642-30023-3_1
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record