Show simple item record

dc.contributor.authorLeroy, A.
dc.contributor.authorWalter, F.
dc.contributor.authorBrinks, E.
dc.contributor.authorBigiel, F.
dc.contributor.authorde Blok, W.J.G.
dc.contributor.authorMadore, B.
dc.contributor.authorThornley, M.D.
dc.date.accessioned2012-12-11T12:59:45Z
dc.date.available2012-12-11T12:59:45Z
dc.date.issued2008
dc.identifier.citationLeroy , A , Walter , F , Brinks , E , Bigiel , F , de Blok , W J G , Madore , B & Thornley , M D 2008 , ' The star formation efficiency in nearby galaxies : measuring where gas forms stars effectively ' , The Astronomical Journal , vol. 136 , no. 6 , pp. 2782-2845 . https://doi.org/10.1088/0004-6256/136/6/2782
dc.identifier.issn0004-6256
dc.identifier.otherPURE: 171540
dc.identifier.otherPURE UUID: 4ba374d5-5b8b-46be-964c-4a033a1c4859
dc.identifier.otherdspace: 2299/2704
dc.identifier.otherScopus: 61949083234
dc.identifier.otherORCID: /0000-0002-7758-9699/work/30407844
dc.identifier.urihttp://hdl.handle.net/2299/9360
dc.descriptionOriginal article can be found at: http://www.iop.org/EJ/journal/aj Copyright American Astronomical Society DOI: 10.1088/0004-6256/136/6/2782 [Full text of this article is not available in the UHRA]
dc.description.abstractWe measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds.We use Hi maps from The Hi Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies.We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultravioletmaps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 μm maps, infer stellar surface density profiles fromSINGS 3.6 μm data, and use kinematics fromTHINGS.We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ± 2.5) × 10−10 yr−1 (equivalent to an H2 depletion time of 1.9×109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly Hi, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r25–0.25r25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to Hi-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe—phase balance in the Hi, H2 formation and destruction, and stellar feedback—governs the formation of GMCs from Hi.en
dc.language.isoeng
dc.relation.ispartofThe Astronomical Journal
dc.titleThe star formation efficiency in nearby galaxies : measuring where gas forms stars effectivelyen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research
dc.description.statusPeer reviewed
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1088/0004-6256/136/6/2782
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record