University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice

        Author
        Guo, J.
        Cheng, W.P.
        Gu, J.
        Ding, C.
        Qu, X.
        Yang, Z.
        O'Driscoll, C.
        Attention
        2299/9368
        Abstract
        Prostate cancer is associated with high mortality and new therapeutic strategies are necessary for improved patient outcome. The utilisation of potent, sequence-specific small interfering RNA (siRNA) to facilitate down-regulation of complementary mRNA sequences in vitro and in vivo has stimulated the development of siRNA-based cancer therapies. However, the lack of an effective siRNA delivery system significantly retards clinical application. Amphiphilic polycations with 'stealth' capacity have previously been synthesised by PEGylation of poly-l-lysine-cholic acid (PLL-CA). The benzoic imine linker between PEG and PLL-CA was designed to be stable at physiological pH but cleavable at lower pHs, consistent with the extracellular environment of tumours and the interior of endosomes/lysosomes. The selective hydrolysis of the PEG linker at these targeted sites should provide enhanced cellular uptake and endosomal escape while simultaneously ensuring prolonged blood circulation times. In this study, physicochemical profiling demonstrated nano-complex formation between the PLL derivatives and siRNA (200-280 nm in diameter). At physiological pH only a slight cationic surface charge (40 mV) were detected upon hydrolysis of the PEG linker at acidic pHs (pH = 6.8 and 5.5, respectively). The PEGylated complexes were stable in serum without significant aggregation or decomplexation of siRNA for up to 48 h. At the cellular level, PEG-PLLs were comparable with the commercial carrier INTERFRin™, in terms of cellular uptake, endosomal escape and in vitro reporter gene knockdown. In vivo, utilising a mouse model grafted with prostate carcinoma, significant tumour suppression was achieved using PEGylated complexes without marked toxicity or undesirable immunological response, this was accompanied by a simultaneous reduction in target mRNA levels. In summary, the advantages of these vectors include: the in vitro and in vivo silencing efficiency, and the low toxicity and immunogenicity.
        Publication date
        2012
        Published in
        European Journal of Pharmaceutical Sciences
        Published version
        https://doi.org/10.1016/j.ejps.2011.11.024
        Other links
        http://hdl.handle.net/2299/9368
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan