University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Discriminating the molecular identity and function of discrete supramolecular structures in topical pharmaceutical formulations

        Author
        Benaouda, F.
        Brown, Marc
        Ganguly, S.
        Jones, S.A.
        Martin, G.P.
        Attention
        2299/9426
        Abstract
        There is a need to understand how solvent structuring influences drug presentation in pharmaceutical preparations, and the aim of this study was to characterize the properties of propylene glycol (PG)/water supramolecular structures such that their functional consequences on drug delivery could be assessed. Shifts to higher wavenumbers in the C–H and C–O infrared stretching vibrations of PG (up to 8.6 and 11 cm–1, respectively) implied that water supramolecular structures were being formed as a consequence of hydrophobic hydration. However, unlike analogous binary solvent systems, water structuring was not enhanced by the presence of the cosolvent. Two discrete populations of supramolecular structures were evident from the infrared spectroscopy: water-rich structures, predominant below a PG volume fraction (fPG) of 0.4 (unmoving water bending vibration at 1211 cm–1) and PG-rich structures, predominant above 0.4 fPG (both C–H and water peaks moved to lower wavenumbers). The un-ionized diclofenac log–linear solubility and transmembrane transport altered dramatically when fPG > 0.55 (a 10-fold increase in transport from 0.28 ± 0.06 μg·cm–2·h–1 at 0.2 fPG to 2.81 ± 0.16 μg·cm–2·h–1 at 0.9 fPG), and this demonstrated the ability of the PG rich supramolecular structures, formed in the PG/water solvent, to specifically modify the behavior of un-ionized diclofenac.
        Publication date
        2012-09-04
        Published in
        Molecular Pharmaceutics
        Published version
        https://doi.org/10.1021/mp300127f
        Other links
        http://hdl.handle.net/2299/9426
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan