University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        In Silico Prediction of Aqueous Solubility Using Simple QSPR Models : The Importance of Phenol and Phenol-like Moieties

        Author
        Ali, Jogoth
        Camilleri, Patrick
        Brown, Marc
        Hutt, Andrew John
        Kirton, Stewart Brian
        Attention
        2299/9579
        Abstract
        Recently the authors published a robust QSPR model of aqueous solubility which exploited the computationally derived molecular descriptor topographical polar surface area (TPSA) alongside experimentally determined melting point and logP. This model (the “TPSA model”) is able to accurately predict to within ± one log unit the aqueous solubility of 87% of the compounds in a chemically diverse data set of 1265 molecules. This is comparable to results achieved for established models of aqueous solubility e.g. ESOL (79%) and the General Solubility Equation (81%). Hierarchical clustering of this data set according to chemical similarity shows that a significant number of molecules with phenolic and/or phenol-like moieties are poorly predicted by these equations. Modification of the TPSA model to additionally incorporate a descriptor pertaining to a simple count of phenol and phenol-like moieties improves the predictive ability within ± one log unit to 89% for the full data set (1265 compounds −8.48 < logS < 1.58) and 82% for a reduced data set (1160 compounds 6.00 < logS < 0.00) which excludes compounds at the sparsely populated extremities of the data range. This improvement can be rationalized as the additional descriptor in the model acting as a correction factor which acknowledges the effect of phenolic substituents on the electronic characteristics of aromatic molecules i.e. the generally positive contribution to aqueous solubility made by phenolic moieties
        Publication date
        2012-10-28
        Published in
        Journal of Chemical Information and Modeling
        Published version
        https://doi.org/10.1021/ci300447c
        Other links
        http://hdl.handle.net/2299/9579
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan