University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        In situ and Ex situ analysis of salmeterol xinafoate microcrystal formation from poly(ethylene glycol) 400 - Water cosolvent mixtures

        Author
        Murnane, Darragh
        Marriott, Christopher
        Martin, Gary P.
        Attention
        2299/9583
        Abstract
        Salmeterol xinafoate (SX) crystallization was investigated under different conditions of stirring, antisolvent addition, and supersaturation to identify factors limiting particle growth to enable the production of respirable SX microcrystals from PEG 400. Plastic behavior was observed,from rheometry of SX-PEG 400 crystallization media indicating a three-dimensional structure following formation of the crystal phase. Above the yield point, the plastic viscosity of the crystallization medium was identical to PEG solutions. Crystallization was concurrent with mixing regardless of the antisolvent addition method. The crystal size distribution (CSD) depended on the stirring conditions indicating that the CSD depended on a balance of the micro-, meso-, and macromixing steps in the turbulent mixing process arising from the viscous and microviscous properties of PEG. Crystallization from PEG 400 followed nucleation theory with the smallest microcrystals being produced at higher SX supersaturation. The degree of nucleation depended on the initial supersaturation and determined the final crystal median diameter. The latter finding was supported by focused beam reflectance measurement and particle vision and measurement analysis. The nascent microcrystals appeared to be stabilized against agglomeration and extensive particle growth by reversible flocculation.
        Publication date
        2008-06
        Published in
        Crystal Growth & Design
        Published version
        https://doi.org/10.1021/cg700953k
        Other links
        http://hdl.handle.net/2299/9583
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan