University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Bioharness (TM) multivariable monitoring device Part I : Validity

        Author
        Johnstone, James Alexander
        Ford, Paul. A
        Hughes, Gerwyn
        Watson, Tim
        Garrett, Andrew. T
        Attention
        2299/9731
        Abstract
        The BioharnessTM monitoring system may provide physiological information on human performance but there is limited information on its validity. The objective of this study was to assess the validity of all 5 BioharnessTM variables using a laboratory based treadmill protocol. 22 healthy males participated. Heart rate (HR), Breathing Frequency (BF) and Accelerometry (ACC) precision were assessed during a discontinuous incremental (0-12 km·h-1) treadmill protocol. Infra-red skin temperature (ST) was assessed during a 45 min-1 sub- maximal cycle ergometer test, completed twice, with environmental temperature controlled at 20 ± 0.1 °C and 30 ± 0.1 °C. Posture (P) was assessed using a tilt table moved through 160°. Adopted precision of measurement devices were; HR: Polar T31 (Polar Electro), BF: Spirometer (Cortex Metalyser), ACC: Oxygen expenditure (Cortex Metalyser), ST: Skin thermistors (Grant Instruments), P:Goniometer (Leighton Flexometer). Strong relationships (r = .89 to .99, p < 0.01) were reported for HR, BF, ACC and P. Limits of agreement identified differences in HR (-3.05 ± 32.20 b·min-1), BF (-3.46 ± 43.70 br·min-1) and P (0.20 ± 2.62°). ST established a moderate relationships (-0.61 ± 1.98 °C; r = 0.76, p < 0.01). Higher velocities on the treadmill decreased the precision of measurement, especially HR and BF. Global results suggest that the BioharressTM is a valid multivariable monitoring device within the laboratory environment.
        Publication date
        2012-09
        Published in
        Journal of Sports Science and Medicine
        Other links
        http://hdl.handle.net/2299/9731
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan