University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Load sequence effect on fatigue damage

        Author
        Xu, Y.G.
        Wang, L.
        Chen, Yong
        Tiu, W.
        Attention
        2299/9799
        Abstract
        Reliable damage tolerant design of airframe structures relies on the accurate life prediction of fatigue cracks propagating from a detectable size to the critical size, which is challenging due to the complex load sequence effect under spectrum loading. This paper aims at gaining a further understanding of the complex influence of the loading history on fatigue damage through a detailed numerical simulation of the near-tip crack behaviour using the crack closure concept. The spectrum loading is broken down into a number of simple yet representative loading scenarios with overload/underload superimposed onto the baseline constant amplitude fatigue loading. Detailed finite element (FE) simulation of the plasticity-induced crack closure (PICC) has been carried out to catch the transient behaviour of PICC and link it to the fatigue damage. The load interaction effect has been analysed with the aim to identify the possible dominant loading cycle which could simplify the fatigue life prediction process in the industry. It is concluded that more reliable damage tolerant design can be achieved if the load sequence effect on fatigue damage can be taken into account more accurately for a structure under spectrum loadings.
        Publication date
        2012
        Published in
        Key Engineering Materials
        Published version
        https://doi.org/10.4028/www.scientific.net/KEM.488-489.545
        Other links
        http://hdl.handle.net/2299/9799
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan