Rapid Chemical Enrichment by Intermittent Star Formation in GN-z11

Kobayashi, Chiaki and Ferrara, Andrea (2024) Rapid Chemical Enrichment by Intermittent Star Formation in GN-z11. Astrophysical Journal Letters, 962 (1): L6. pp. 1-7. ISSN 2041-8205
Copy

We interpret the peculiar supersolar nitrogen abundance recently reported by the James Webb Space Telescope observations for GN-z11 (z = 10.6) using our state-of-the-art chemical evolution models. The observed CNO ratios can be successfully reproduced—independently of the adopted initial mass function, nucleosynthesis yields, and presence of supermassive (>1000M ⊙) stars—if the galaxy has undergone an intermittent star formation history with a quiescent phase lasting ∼100 Myr, separating two strong starbursts. Immediately after the second burst, Wolf-Rayet stars (up to 120M ⊙) become the dominant enrichment source, also temporarily (<1 Myr) enhancing particular elements (N, F, Na, and Al) and isotopes ( 13C and 18O). Alternative explanations involving (i) single burst models, also including very massive stars and/or pair-instability supernovae, or (ii) pre-enrichment scenarios fail to match the data. Feedback-regulated, intermittent star formation might be common in early systems. Elemental abundances can be used to test this hypothesis and to get new insights on nuclear and stellar astrophysics.

visibility_off picture_as_pdf

picture_as_pdf
2308.15583.pdf
subject
Submitted Version
lock
Restricted to Repository staff only
Available under Creative Commons: BY 4.0

Request Copy
picture_as_pdf

Published Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads