Revised Architecture and Two New Super-Earths in the HD 134606 Planetary System
Multiplanet systems exhibit a diversity of architectures that diverge from the solar system and contribute to the topic of exoplanet demographics. Radial velocity (RV) surveys form a crucial component of exoplanet surveys, as their long observational baselines allow for searches for more distant planetary orbits. This work provides a significantly revised architecture for the multiplanet system HD 134606 using both HARPS and UCLES RVs. We confirm the presence of previously reported planets b, c, and d with periods of 12.0897 − 0.0018 + 0.0019 , 58.947 − 0.054 + 0.056 , and 958.7 − 5.9 + 6.3 days and masses of 9.14 − 0.63 + 0.65 , 11.0 ± 1, and 44.5 ± 2.9 Earth masses, respectively, with the planet d orbit significantly revised to over double that originally reported. We report two newly detected super-Earths, e and f, with periods of 4.31943 − 0.00068 + 0.00075 and 26.9 − 0.017 + 0.019 days and masses of 2.31 − 0.35 + 0.36 and 5.52 − 0.73 + 0.74 Earth masses, respectively. In addition, we identify a linear trend in the RV time series, and the cause of this acceleration is deemed to be a newly detected massive companion with a very long orbital period. HD 134606 now displays four low-mass planets in a compact region near the star, one gas giant further out in the habitable zone, an additional companion in the outer regime, and a low-mass M dwarf stellar companion at large separation, making it an intriguing target for system formation/evolution studies. The location of planet d in the habitable zone proves to be an exciting candidate for future space-based direct imaging missions, whereas continued RV observations of this system are recommended for understanding the nature of the massive, long-period companion.
Item Type | Article |
---|---|
Additional information | © 2024. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ |
Keywords | astro-ph.ep, exoplanet dynamics, exoplanet detection methods, high contrast techniques, exoplanet systems, orbits, radial velocity, stellar activity, exoplanets, photometry, astrometry, astronomy and astrophysics, space and planetary science |
Date Deposited | 15 May 2025 15:25 |
Last Modified | 31 May 2025 00:42 |
-
picture_as_pdf - 2401.17415v1.pdf
-
subject - Submitted Version
-
lock - Restricted to Repository staff only
-
- Available under Creative Commons: BY 4.0