LEADNet: Detection of Alzheimer’s Disease using Spatiotemporal EEG Analysis and Low-Complexity CNN

Puri, Digambar V., Kachare, Pramod H., Sangle, Sandeep B., Kirner, Raimund, Jabbari, Abdoh, Al-Shourbaji, Ibrahim, Abdalraheem, Mohammed and Alameen, Abdalla (2024) LEADNet: Detection of Alzheimer’s Disease using Spatiotemporal EEG Analysis and Low-Complexity CNN. IEEE Access, 12. pp. 113888-113897. ISSN 2169-3536
Copy

Clinical methods for dementia detection are expensive and prone to human errors. Despite various computer-aided methods using electroencephalography (EEG) signals and artificial intelligence, a reliable detection of Alzheimer’s disease (AD) remains a challenge. The existing EEG-based machine learning models have limited performance or high computation complexity. Hence, there is a need for an optimal deep learning model for the detection of AD. This paper proposes a low-complexity EEG-based AD detection CNN called LEADNet to generate disease-specific features. LEADNet employs spatiotemporal EEG signals as input, two convolution layers for feature generation, a max-pooling layer for asymmetric spatiotemporal redundancy reduction, two fully-connected layers for nonlinear feature transformation and selection, and a softmax layer for disease probability prediction. Different quantitative measures are calculated using an open-source AD dataset to compare LEADNet and four pre-trained CNN models. The results show that the lightweight architecture of LEADNet has at least a 150-fold reduction in network parameters and the highest testing accuracy of 99.24% compared to pre-trained models. The investigation of individual layers of LEADNet showed successive improvements in feature transformation and selection for detecting AD subjects. A comparison with the state-of-the-art AD detection models showed that the highest accuracy, sensitivity, and specificity were achieved by the LEADNet model.


picture_as_pdf
LEADNet_Detection_of_Alzheimers_Disease_Using_Spatiotemporal_EEG_Analysis_and_Low-Complexity_CNN.pdf
subject
Published Version
Available under Creative Commons: BY-NC-ND 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads