Real-Time Gaze Estimation Using Webcam-Based CNN Models for Human-Computer Interactions

Vidhya, Visal and Resende Faria, Diego (2025) Real-Time Gaze Estimation Using Webcam-Based CNN Models for Human-Computer Interactions. Computers, 14 (2): 57. pp. 1-27. ISSN 2073-431X
Copy

Gaze tracking and estimation are essential for understanding human behavior and enhancing human–computer interactions. This study introduces an innovative, cost-effective solution for real-time gaze tracking using a standard webcam, providing a practical alternative to conventional methods that rely on expensive infrared (IR) cameras. Traditional approaches, such as Pupil Center Corneal Reflection (PCCR), require IR cameras to capture corneal reflections and iris glints, demanding high-resolution images and controlled environments. In contrast, the proposed method utilizes a convolutional neural network (CNN) trained on webcam-captured images to achieve precise gaze estimation. The developed deep learning model achieves a mean squared error (MSE) of 0.0112 and an accuracy of 90.98% through a novel trajectory-based accuracy evaluation system. This system involves an animation of a ball moving across the screen, with the user’s gaze following the ball’s motion. Accuracy is determined by calculating the proportion of gaze points falling within a predefined threshold based on the ball’s radius, ensuring a comprehensive evaluation of the system’s performance across all screen regions. Data collection is both simplified and effective, capturing images of the user’s right eye while they focus on the screen. Additionally, the system includes advanced gaze analysis tools, such as heat maps, gaze fixation tracking, and blink rate monitoring, which are all integrated into an intuitive user interface. The robustness of this approach is further enhanced by incorporating Google’s Mediapipe model for facial landmark detection, improving accuracy and reliability. The evaluation results demonstrate that the proposed method delivers high-accuracy gaze prediction without the need for expensive equipment, making it a practical and accessible solution for diverse applications in human–computer interactions and behavioral research.


picture_as_pdf
computers-14-00057.pdf
subject
Published Version
Available under Creative Commons: BY 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads