EEG microstate syntax analysis: A review of methodological challenges and advances

Haydock, David, Kadir, Shabnam, Leech, Robert, Nehaniv, Chrystopher L. and Antonova, Elena (2025) EEG microstate syntax analysis: A review of methodological challenges and advances. Neuroimage, 309: 121090. pp. 1-13. ISSN 1053-8119
Copy

Electroencephalography (EEG) microstates are “quasi-stable” periods of electrical potential distribution in multichannel EEG derived from peaks in Global Field Power. Transitions between microstates form a temporal sequence that may reflect underlying neural dynamics. Mounting evidence indicates that EEG microstate sequences have long-range, non-Markovian dependencies, suggesting a complex underlying process that drives EEG microstate syntax (i.e., the transitional dynamics between microstates). Despite growing interest in EEG microstate syntax, the field remains fragmented, with inconsistent terminologies used between studies and a lack of defined methodological categories. To advance the understanding of functional significance of microstates and to facilitate methodological comparability and finding replicability across studies, we: i) derive categories of syntax analysis methods, reviewing how each may be utilised most readily; ii) define three “time-modes” for EEG microstate sequence construction; and iii) outline general issues concerning current microstate syntax analysis methods, suggesting that the microstate models derived using these methods are cross-referenced against models of continuous EEG. We advocate for these continuous approaches as they do not assume a winner-takes-all model inherent in the microstate derivation methods and contextualise the relationship between microstate models and EEG data. They may also allow for the development of more robust associative models between microstates and functional Magnetic Resonance Imaging data.


picture_as_pdf
1-s2.0-S1053811925000928-main.pdf
subject
Published Version
Available under Creative Commons: BY 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads