Using single layer networks for discrete, sequential data: an example from natural language processing. [extended version]

Lyon, C. (1996) Using single layer networks for discrete, sequential data: an example from natural language processing. [extended version]. [Report]
Copy

Supervised, feed-forward networks will, in general, need more than one layer to process data. However, if they can be used, single layer networks offer advantages of functional transparency and operational speed. Now, in some cases data can be pre-processed and then presented in a linearly separable form for processing by a single layer net. In effect, processing at different stages can be de-coupled. The critical issue is finding the pre-processing function to convert data into an appropriate form. For characteristic linguistic data this can be done, and a natural language parser which has been successfully implemented is used to investigate the approach. Single layer nets can then be trained by finding weight adjustments based on (a) factors proportional to the input, as in the Perceptron, (b) factors proportional to the existing weights,and (c) an error minimization mathod. In our experiments generalization ability varies little; method (b) has been used for the prototype parser.


picture_as_pdf
CSTR+242.pdf

View Download

EndNote BibTeX Reference Manager Refer Atom Dublin Core OpenURL ContextObject OpenURL ContextObject in Span MPEG-21 DIDL MODS HTML Citation METS ASCII Citation Data Cite XML RIOXX2 XML
Export

Downloads