Using graph theoretic measures to predict the performance of associative memory models

Calcraft, L., Adams, R.G., Chen, W. and Davey, N. (2008) Using graph theoretic measures to predict the performance of associative memory models. In: UNSPECIFIED.
Copy

We test a selection of associative memory models built with different connection strategies, exploring the relationship between the structural properties of each network and its pattern-completion performance. It is found that the Local Efficiency of the network can be used to predict pattern completion performance for associative memory models built with a range of different connection strategies. This relationship is maintained as the networks are scaled up in size, but breaks down under conditions of very sparse connectivity.


picture_as_pdf
902639.pdf

View Download

EndNote BibTeX Reference Manager Refer Atom Dublin Core OpenURL ContextObject in Span HTML Citation MPEG-21 DIDL RIOXX2 XML ASCII Citation OpenURL ContextObject MODS METS Data Cite XML
Export

Downloads