Comparing computational and human measures of visual similarity

Gale, T.M., Sun, Yi., Adams, R.G. and Davey, N. (2005) Comparing computational and human measures of visual similarity. In: Procs of the 9th Neural Computation and Psychology Workshop :. World Scientific Publishing, pp. 397-401.
Copy

There have been many attempts to quantify visual similarity within different categories of objects, with a view to using such measures to predict impaired recognition performance. Although many studies have linked measures of visual similarity to behavioral outcomes associated with object recognition, there has been little research on whether these measures are associated with human ratings of perceived similarity. In this work, we compare similarity measures extracted from Principal Component Analysis, Isometric Feature Mapping and wavelets representations with ratings of human subjects. Our results show that features extracted by calculating the standard deviation of wavelet coefficients provides the closest fit to the human rating data of all the methods we applied here.


picture_as_pdf
901760.pdf
subject
Submitted Version

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads