Feature extraction from spectro-temporal signals using dynamic synapses, recurrency, and lateral inhibition

Glackin, C., Maguire, L. and McDaid, L. (2010) Feature extraction from spectro-temporal signals using dynamic synapses, recurrency, and lateral inhibition. In: Neural Networks (IJCNN), The 2010 International Joint Conference on :. Institute of Electrical and Electronics Engineers (IEEE), pp. 1-6. ISBN 978-1-4244-8126-2
Copy

This paper presents a spiking neural network-based investigation of the issues associated with extraction of onset, offset, and coincidental firing features from spectro-temporal data. Speech samples containing spoken isolated digits from the TI46 database are employed to demonstrate the way in which these features can be extracted using leaky integrate-and-fire spiking neurons with dynamic synapses. The flexibility that the additional synaptic parameters in the neuron model provides, is demonstrated to be essential for onset, offset and coincidental firing extraction. Recurrency and the interaction between excitation and inhibition together with latency is demonstrated to be a viable means of extracting offset features. The effects of lateral inhibition and in particular its ability to induce transient synchrony in spike firing is evaluated. In particular, by defining a connection length parameter, and hence a neighbourhood size, synchronous firing is shown to gradually develop as connection length and neighbourhood size increases. Finally, the implications for this connectivity in spiking neural networks and its potential for learning spectral and spatio-temporal patterns via the formation of receptive fields is discussed

visibility_off picture_as_pdf

picture_as_pdf
05596818.pdf
subject
Published Version
lock
Restricted to Repository staff only

Request Copy

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads