An enhanced fuzzy ARM approach for intrusion detection

Abouzakhar, N.S., Chen, H. and Christianson, B. (2011) An enhanced fuzzy ARM approach for intrusion detection. International Journal of Digital Crime and Forensics, 3 (2). pp. 41-61. ISSN 1941-6210
Copy

The integration of fuzzy logic with data mining methods such as association rules has achieved interesting results in various digital forensics applications. As a data mining technique, the association rule mining (ARM) algorithm uses ranges to convert any quantitative features into categorical ones. Such features lead to the sudden boundary problem, which can be smoothed by incorporating fuzzy logic so as to develop interesting patterns for intrusion detection. This paper introduces a Fuzzy ARM-based intrusion detection model that is tested on the CAIDA 2007 backscatter network traffic dataset. Moreover, the authors present an improved algorithm named Matrix Fuzzy ARM algorithm for mining fuzzy association rules. The experiments and results that are presented in this paper demonstrate the effectiveness of integrating fuzzy logic with association rule mining in intrusion detection. The performance of the developed detection model is improved by using this integrated approach and improved algorithm.

visibility_off picture_as_pdf

picture_as_pdf
N_Abouzakhar_1.pdf
subject
Published Version
lock
Restricted to Repository staff only

Request Copy

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads