Further thoughts on precision
Background: There has been much discussion amongst automated software defect prediction researchers regarding use of the precision and false positive rate classifier performance metrics. Aim: To demonstrate and explain why failing to report precision when using data with highly imbalanced class distributions may provide an overly optimistic view of classifier performance. Method: Well documented examples of how dependent class distribution affects the suitability of performance measures. Conclusions: When using data where the minority class represents less than around 5 to 10 percent of data points in total, failing to report precision may be a critical mistake. Furthermore, deriving the precision values omitted from studies can reveal valuable insight into true classifier performance
| Item Type | Article | 
|---|---|
| Identification Number | 10.1049/ic.2011.0016 | 
| Date Deposited | 15 May 2025 12:19 | 
| Last Modified | 22 Oct 2025 19:13 | 
- 
            picture_as_pdf 
- 905746.pdf
- 
            subject 
- Submitted Version