Quantum loop algebras and l-root operators

Young, Charles (2015) Quantum loop algebras and l-root operators. Transformation Groups, 20 (4). pp. 1195-1226. ISSN 1083-4362
Copy

Let g be a simple Lie algebra and q transcendental. We consider the category C_P of finite-dimensional representations of the quantum loop algebra Uq(Lg) in which the poles of all l-weights belong to specified finite sets P. Given the data (g,q,P), we define an algebra A whose raising/lowering operators are constructed to act with definite l-weight (unlike those of Uq(Lg) itself). It is shown that there is a homomorphism Uq(Lg) -> A such that every representation V in C_P is the pull-back of a representation of A.


picture_as_pdf
Accepted_Manuscript.pdf
subject
Submitted Version
Available under Creative Commons: BY 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads