Embedded Clusters in the Large Magellanic Cloud using the VISTA Magellanic Clouds Survey

Romita, Krista, Lada, Elisabeth and Cioni, M-R.L. (2016) Embedded Clusters in the Large Magellanic Cloud using the VISTA Magellanic Clouds Survey. The Astrophysical Journal, 821 (1). ISSN 0004-637X
Copy

We present initial results of the first large scale survey of embedded star clusters in molecular clouds in the Large Magellanic Cloud (LMC) using near-infrared (NIR) imaging from the VISTA Magellanic Clouds Survey (Cioni et al. 2011). We have explored a 1.65 deg sq. area of the LMC, which contains the well-known star-forming region 30 Doradus as well as 14% of the galaxy's CO clouds (Wong et al. 2011), and have identied 67 embedded cluster candidates, 45 of which are newly discovered as clusters. We have determined sizes, luminosities and masses for these embedded clusters, examined the star formation rates (SFRs) of their corresponding molecular clouds, and made a comparison between the LMC and the Milky Way. Our preliminary results indicate that embedded clusters in the LMC are generally larger, more luminous and more massive than those in the local Milky Way. We also find that the surface densities of both embedded clusters and molecular clouds is 3 times higher than in our local environment, the embedded cluster mass surface density is 40 times higher, the SFR is 20 times higher, and the star formation efficiency is 10 times higher. Despite these differences, the SFRs of the LMC molecular clouds are consistent with the SFR scaling law presented in Lada et al. (2012). This consistency indicates that while the conditions of embedded cluster formation may vary between environments, the overall process within molecular clouds may be universal


picture_as_pdf
Romita_2016_ApJ_821_51.pdf
subject
Published Version

View Download

EndNote BibTeX Reference Manager Refer Atom Dublin Core OpenURL ContextObject in Span METS HTML Citation MODS MPEG-21 DIDL ASCII Citation OpenURL ContextObject Data Cite XML RIOXX2 XML
Export

Downloads
?