Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy

Inal, Jameel M. (2020) Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy. Clinical science (London, England : 1979), 134 (12). pp. 1301-1304. ISSN 0143-5221
Copy

The novel strain of coronavirus that appeared in 2019, SARS-CoV-2, is the causative agent of severe respiratory disease, COVID-19, and the ongoing pandemic. As for SARS-CoV that caused the SARS 2003 epidemic, the receptor on host cells that promotes uptake, through attachment of the spike (S) protein of the virus, is angiotensin-converting enzyme 2 (ACE2). In a recent article published by Batlle et al. (Clin. Sci. (Lond.) (2020) 134, 543-545) it was suggested that soluble recombinant ACE2 could be used as a novel biological therapeutic to intercept the virus, limiting the progression of infection and reducing lung injury. Another way, discussed here, to capture SARS-CoV-2, as an adjunct or alternative, would be to use ACE2+-small extracellular vesicles (sEVs). A competitive inhibition therapy could therefore be developed, using sEVs from engineered mesenchymal stromal/stem cells (MSCs), overexpressing ACE2.


picture_as_pdf
cs_2020_0623.pdf
subject
Published Version
Available under Creative Commons: BY-NC-ND 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads