Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams

Regelskis, Vidas and Vlaar, Bart (2020) Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams. Bulletin of the London Mathematical Society, 52 (4). pp. 693-715. ISSN 0024-6093
Copy

Let (Formula presented.) be a finite-dimensional semisimple complex Lie algebra and (Formula presented.) an involutive automorphism of (Formula presented.). According to Letzter, Kolb and Balagović the fixed-point subalgebra (Formula presented.) has a quantum counterpart (Formula presented.), a coideal subalgebra of the Drinfeld–Jimbo quantum group (Formula presented.) possessing a universal (Formula presented.) -matrix (Formula presented.). The objects (Formula presented.), (Formula presented.), (Formula presented.) and (Formula presented.) can all be described in terms of Satake diagrams. In the present work, we extend this construction to generalized Satake diagrams, combinatorial data first considered by Heck. A generalized Satake diagram naturally defines a semisimple automorphism (Formula presented.) of (Formula presented.) restricting to the standard Cartan subalgebra (Formula presented.) as an involution. It also defines a subalgebra (Formula presented.) satisfying (Formula presented.), but not necessarily a fixed-point subalgebra. The subalgebra (Formula presented.) can be quantized to a coideal subalgebra of (Formula presented.) endowed with a universal (Formula presented.) -matrix in the sense of Kolb and Balagović. We conjecture that all such coideal subalgebras of (Formula presented.) arise from generalized Satake diagrams in this way.


picture_as_pdf
blms.12360.pdf
subject
Published Version
Available under Creative Commons: BY 4.0

View Download

EndNote BibTeX Reference Manager Refer Atom Dublin Core OpenURL ContextObject in Span METS HTML Citation MODS MPEG-21 DIDL ASCII Citation OpenURL ContextObject Data Cite XML RIOXX2 XML
Export

Downloads
?