Au-197(n,gamma) cross section in the unresolved resonance region
Author
Lederer, C.
Colonna, N.
Domingo-Pardo, C.
Gunsing, F.
Kaeppeler, F.
Massimi, C.
Mengoni, A.
Wallner, A.
Abbondanno, U.
Aerts, G.
Alvarez, H.
Alvarez-Velarde, F.
Andriamonje, S.
Andrzejewski, J.
Assimakopoulos, P.
Audouin, L.
Badurek, G.
Barbagallo, M.
Baumann, P.
Becvar, F.
Belloni, F.
Berthoumieux, E.
Calviani, M.
Calvino, F.
Cano-Ott, D.
Capote, R.
Carrapico, C.
Carrillo de Albornoz, A.
Cennini, P.
Chepel, V.
Chiaveri, E.
Cortes, G.
Couture, A.
Cox, J.
Dahlfors, M.
David, S.
Dillmann, I.
Dolfini, R.
Dridi, W.
Duran, I.
Eleftheriadis, C.
Embid-Segura, M.
Ferrant, L.
Ferrari, A.
Ferreira-Marques, R.
Fitzpatrick, L.
Frais-Koelbl, H.
Fujii, K.
Furman, W.
Rauscher, T.
n TOF Collaboration
Attention
2299/10526
Abstract
The cross section of the reaction Au-197(n,gamma) was measured with the time-of-flight technique at the n_TOF (neutron time-of-flight) facility in the unresolved resonance region between 5 and 400 keV using a pair of C6D6 (where D denotes H-2) liquid scintillators for the detection of prompt capture gamma rays. The results with a total uncertainty of 3.9%-6.7% for a resolution of 20 bins per energy decade show fair agreement with the Evaluated Nuclear Data File Version B-VII.0 (ENDF/B-VII.0), which contains the standard evaluation. The Maxwellian-averaged cross section (MACS) at 30 keV is in excellent agreement with the one according to the ENDF/B-VII.0 evaluation and 4.7% higher than the MACS measured independently by activation technique. Structures in the cross section, which had also been reported earlier, have been interpreted as being due to clusters of resonances.