University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        A self-report comorbidity questionnaire for haemodialysis patients

        View/Open
        A_Self_Report_comorb.pdf (PDF, 429Kb)
        Author
        Sridharan, Sivakumar
        Berdeprado, Jocelyn
        Vilar, Enric
        Roberts, Justin
        Farrington, Ken
        Attention
        2299/15752
        Abstract
        Background: Patients with end-stage renal disease (ESRD) have multiple comorbid conditions. Obtaining comorbidity data from medical records is cumbersome. A self-report comorbidity questionnaire is a useful alternative. Our aim in this study was to examine the predictive value of a self-report comorbidity questionnaire in terms of survival in ESRD patients. Methods. We studied a prospective cross-sectional cohort of 282 haemodialysis (HD) patients in a single centre. Participants were administered the self-report questionnaire during an HD session. Information on their comorbidities was subsequently obtained from an examination of the patient's medical records. Levels of agreement between parameters derived from the questionnaire, and from the medical records, were examined. Participants were followed-up for 18 months to collect survival data. The influence on survival of comorbidity scores derived from the self-report data (the Composite Self-report Comorbidity Score [CSCS]) and from medical records data - the Charlson Comorbidity Index [CCI] were compared. Results: The level of agreement between the self-report items and those obtained from medical records was almost perfect with respect the presence of diabetes (Kappa score κ 0.97), substantial for heart disease and cancer (κ 0.62 and κ 0.72 respectively), moderate for liver disease (κ 0.51), only fair for lung disease, arthritis, cerebrovascular disease, and depression (κ 0.34, 0.35, 0.34 and 0.29 respectively). The CSCS was strongly predictive of survival in regression models (Nagelkerke R2value 0.202), with a predictive power similar to that of the CCI (Nagelkerke R2value 0.211). The influences of these two parameters were additive in the models - suggesting that these parameters make different contributions to the assessment of comorbidity. Conclusion: This self-report comorbidity questionnaire is a viable tool to collect comorbidity data and may have a role in the prediction of short-term survival in patients with end-stage renal disease on haemodialysis. Further work is required in this setting to refine the tool and define its role.
        Publication date
        2014-08-18
        Published in
        BMC Nephrology
        Published version
        https://doi.org/10.1186/1471-2369-15-134
        Other links
        http://hdl.handle.net/2299/15752
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan