The effect of arm training on thermoregulatory responses and calf volume during upper body exercise
Author
Bottoms, Lindsay
Price, Michael
Attention
2299/16215
Abstract
PURPOSE: The smaller muscle mass of the upper body compared to the lower body may elicit a smaller thermoregulatory stimulus during exercise and thus produce novel training-induced thermoregulatory adaptations. Therefore, the principal aim of the study was to examine the effect of arm training on thermoregulatory responses during submaximal exercise. METHODS: Thirteen healthy male participants (Mean ± SD age 27.8 ± 5.0 years, body mass 74.8 ± 9.5 kg) took part in 8 weeks of arm crank ergometry training. Thermoregulatory and calf blood flow responses were measured during 30 min of arm cranking at 60% peak power (W peak) pre-, and post-training and post-training at the same absolute intensity as pre-training. Core temperature and skin temperatures were measured, along with heat flow at the calf, thigh, upper arm and chest. Calf blood flow using venous occlusion plethysmography was performed pre- and post-exercise and calf volume was determined during exercise. RESULTS: The upper body training reduced aural temperature (0.1 ± 0.3 °C) and heat storage (0.3 ± 0.2 J g(-1)) at a given power output as a result of increased whole body sweating and heat flow. Arm crank training produced a smaller change in calf volume post-training at the same absolute exercise intensity (-1.2 ± 0.8% compared to -2.2 ± 0.9% pre-training; P < 0.05) suggesting reduced leg vasoconstriction. CONCLUSION: Training improved the main markers of aerobic fitness. However, the results of this study suggest arm crank training additionally elicits physiological responses specific to the lower body which may aid thermoregulation.