University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China : An observation based numerical study

        Author
        Cheng, Y. F.
        Wiedensohler, A.
        Eichler, H.
        Heintzenberg, J.
        Tesche, Matthias
        Ansmann, A.
        Wendisch, M.
        Su, H.
        Althausen, D.
        Herrmann, H.
        Gnauk, T.
        Brüggemann, E.
        Hu, M.
        Zhang, Y. H.
        Attention
        2299/16235
        Abstract
        In a numerical study, influences of relative humidity (RH) on aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken (XK) in Pearl River Delta of China are investigated based on the observed particle hygroscopic growth (fg (Dp, RH)) and the relevant aerosol physical and chemical properties. The model is validated by comparing the simulated ambient extinction coefficients with those measured by a Raman LIDAR. At 550 nm, the scattering coefficient increases with a factor of 1.54 and 2.31 at a RH increase from 30% to 80% and 90%, respectively. This ratio is mainly controlled by fg, and generally increases with increasing wavelength and decreases with increasing particle effective diameter. From RH 30% to 90%, the average single scattering albedo (ω0) changes from 0.77 to 0.88, 0.91 to 0.97, and 0.86 to 0.94 for internal, respectively, external mixtures, and the retrieved mixing state of the elemental carbon (EC) at XK. The assumption that the absorption coefficient does not change upon humidification alone can introduce an overestimation of ω0 of 0.02 (∼ 5 %) at RH 90% for an internal mixture. However, accounting for the EC mixing state at XK, this error is only about 0.3%. The mean upscatter fraction (over(β, -)) is evaluated as 0.233 at RH 30% with a 30% decrease to 0.191 at RH 90%. The estimation of aerosol direct radiative forcing (Δ FR) in the surface boundary layer at XK strongly depends on RH and the EC mixing state. The critical ω0 at XK is estimated to be about 0.77-0.80 at 550 nm. Assuming an internal or coated mixture of EC, no pronounced Δ FR is observed when RH < 60 %, whereas a cooling effect arises while RH > 60 %. Under the actual EC mixing conditions at XK, the effect of Δ FR is cooling. Over 40% of this cooling effect is contributed by water at RH 80% and Δ FR at RH 90% exceeds that at RH 30% by about a factor of 2.7.
        Publication date
        2008-08
        Published in
        Atmospheric Environment
        Published version
        https://doi.org/10.1016/j.atmosenv.2008.04.009
        Other links
        http://hdl.handle.net/2299/16235
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan