University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Characterisation of Low Velocity Impact Response in Composite Laminates

        View/Open
        Download fulltext (PDF, 13Mb)
        Author
        Shen, Zeng
        Attention
        2299/16334
        Abstract
        A major concern affecting the efficient use of composite laminates in aerospace industry is the lack of understanding of the effect of low-velocity impact (LVI) damage on the structural integrity. This project aims to develop further knowledge of the response and damage mechanisms of composite laminates under LVI, and to explore the feasibility of assessing the internal impact damage with a visually inspectable parameter. The response and damage mechanisms of composite laminates under LVI have been investigated experimentally and numerically in this project. Various parameters including the laminates thickness, lay-up configuration, repeated impact, and curing temperature have been examined. The concept and the phenomena of delamination threshold load (DTL) have been assessed in details. It was found that DTL exists for composite laminates, but the determination of the DTL value is not straightforward. There is a suitable value of range between the impact energy and the laminates stiffness/thickness, if the sudden load drop phenomenon in the impact force history is used to detect the DTL value. It is suggested that the potential menace of the delamination initiation may be overestimated. The composite laminates tested in this project demonstrate good damage tolerance capacity due to the additional energy absorption mechanism following the delamination initiation. As a result, the current design philosophy for laminated composite structure might be too conservative and should be reassessed to improve the efficiency further. To explore the feasibility of linking the internal damage to a visually inspectable parameter, quasi-static indentation (QSI) tests have been carried out. The dent depth, as a visually inspectable parameter, has been carefully monitored and assessed in relation to the damage status of the composite laminates. It is proposed that the damage process of composite laminates can be divided into different phases based on the difference in the increasing rate of dent depth. Moreover, the internal damage has been examined under the optical microscope (OM) and the scanning electron microscope (SEM). Residual compressive strength of the damaged specimen has been measured using the compression-after-impact (CAI) test. The results further confirm the findings with regard to the overestimated potential menace of the delamination initiation and the proposed damage process assumption. The proposed damage process assumption has great potential to improve the efficiency and accuracy of both the analytical prediction and the structural health monitoring for damages in composite laminates under low-velocity impact.
        Publication date
        2015-08-21
        Published version
        https://doi.org/10.18745/th.16334
        https://doi.org/10.18745/th.16334
        Other links
        http://hdl.handle.net/2299/16334
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan